تجاوز إلى المحتوى الرئيسي

Arrhenius activation energy and thermal radiation effects on oscillatory heat-mass transfer of Darcy Forchheimer nanofluid along heat generating cone

Author name : HAMMAD MULAYH TARJAM ALSHAMMARI
Publication Date : 2024-05-01
Journal Name : Case Studies in Thermal Engineering

Abstract

The main goal of present research is to illustrate the frequency and amplitude behavior of heat and mass transfer of Darcy Forchheimer nanofluid flow with Arrhenius activation energy and thermal radiation effects. The impact of heat generation and chemical reaction on Darcy Forchheimer nanofluid along vertical porous cone is investigated to improve heating durability of thermodynamic systems in this research. The governing mathematical model is moderated in suitable format to construct physical coefficients. The oscillating stokes and primitive coefficients are used to differentiate the model into oscillating and steady forms. The Gaussian elimination and implicit finite difference techniques are used to address the numerical findings. To construct pertinent algorithm in FORTRAN system, the primitive-type variables are used on steady and oscillating models with first law of thermodynamics, nanoparticles and heat generation. The results under defined conditions are reported in numerical and graphical sequence through Tec-plot 360. It is found that the amplitude of surface temperature increases as heat generation increases because heat generation improves the excessive thermal transport. It is depicted that the Darcy-Forchheimer porous material decreases the fluid temperature. It is found that amplitude of mass transfer increases as activation energy and chemical reaction coefficient increases. The oscillating frequency of heat and mass transfer increases as Prandtl number increases. The current mechanism of mass and heat transfer of nanofluid has several uses in mineralogy, cutting tools, lubricating oils, machining operations, heat exchangers, coating sheets, petroleum drilling and cooling of metallic cones.

Keywords

Arrhenius activation energyThermal radiationsDarcy-Forchheimer oscillatory nanofluidHeat generationMixed convectionHeat transfer

Publication Link

https://doi.org/10.1016/j.csite.2024.104294

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا