تجاوز إلى المحتوى الرئيسي

Performance of Cathodes Fabricated from Mixture of Active Materials Obtained from Recycled Lithium-Ion Batteries

Author name : HAMMAD MULAYH TARJAM ALSHAMMARI
Publication Date : 2022-01-01
Journal Name : Multidisciplinary Digital Publishing Institute

Abstract

The cathode performance of lithium-ion batteries (LIBs) fabricated from recycled cathode active materials is studied for three scenarios. These scenarios are based on the conditions for separation of different cathode active materials in recycling facilities during the LIB’s recycling process. In scenario one, the separation process is performed ideally, and the obtained pure single cathode active material is used to make new LIBs after regeneration. In scenario two, the separation of active materials is performed with efficiencies of less than 100%, which is the actual case in the recycling process. In this scenario, a single cathode active material that contains a little of the other types of cathode active materials is used to make new LIBs after the materials’ regeneration. In scenario three, the separation has not been performed during the recycling process. In this scenario, all types of cathode active materials are regenerated together, and a mixture is used to make new LIBs. The studies are performed through modeling and computer simulation, and several experiments are conducted for validation purposes. The cathode active materials that are studied are the five commercially available cathodes made of LiMn2O4 (LMO), LiCoO2 (LCO), LiNixMnyCo(1−x−y)O2 (NMC), LiNixCoyAl(1−x−y)O2 (NCA), and LiFePO4 (LFP). The results indicate that the fabrication of new LIBs with a mixture of cathode active materials is possible when cathode active materials are not ideally separated from each other. However, it is recommended that the separation process is added to the recycling process, at least for the separation of LFP or reducing its amount in the cathode active materials mixture. This is because of the difference of the voltage level of LFP compared to the other studied active materials for cathodes.

Keywords

lithium-ion battery; recycling; cathode performance; mixture of cathode active materials; separation of cathode active materials

Publication Link

https://www.mdpi.com/1996-1073/15/2/410

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا