تجاوز إلى المحتوى الرئيسي

Inhibition of monoamine oxidases by heterocyclic derived conjugated dienones: synthesis and in vitro and in silico investigations

Author name : KHOZAYEM ABDELGAWWAD ABDELWAHAB MOHAMED
Publication Date : 2024-09-12
Journal Name : RSC MEDICINAL CHEMISTRY

Abstract

A total of 18 heterocyclic derived conjugated dienones (CD1–CD18) were evaluated for their potential monoamine oxidase (MAO)-A/-B inhibitory activity. Among the analyzed molecules, CD11 and CD14 showed notable inhibitory potentials against MAO-B, with half-maximal inhibitory concentration (IC50) values of 0.063 ± 0.001 μM and 0.036 ± 0.008 μM, respectively. In contrast, CD1, CD2 and CD3 showed comparable inhibitory activities toward MAO-A, with IC50 values of 3.45 ± 0.07, 3.23 ± 0.24, and 3.15 ± 0.10 μM, respectively. Derivatives of thiophene (CD13–CD17) exhibited selectivity indices greater than 250 for MAO-B. Both lead compounds exhibited similar potencies to safinamide and were more potent than pargyline. According to kinetic analysis, CD11 and CD14 exhibited competitive inhibition of MAO-B activity, with Ki values of 12.67 ± 3.85 nM and 4.5 ± 0.62 nM, respectively. Furthermore, the reversibility test results indicated that the inhibitions were reversible. Molecular docking and molecular dynamics simulation studies can provide insights into the probable binding interactions of CD11 and CD14 with MAO-B. CD11 demonstrated a bipartite contact with Tyr326 and Phe343, whereas CD14 showed contact with Pro102 and Tyr435 via aromatic hydrogen bonds. These results indicated that both compounds have high-affinity binding interactions ( −10.13 and −9.90 kcal mol−1, respectively) at the active site of MAO-B. Furthermore, we used SwissADME to estimate ADME, and both lead compounds demonstrated blood–brain barrier penetration. The study results indicated that all the compounds evaluated demonstrated potent inhibition of MAO-B activity, which was comparable to the efficacy of reference medications. It is necessary to do further investigations on the lead molecules to see whether they may be used to treat different neurodegenerative illnesses.

Keywords

MONOAMINE OXIDASE , INVITRO, SILICO INVESTIGATIONS, CONJUGATUEDDIENONES

Publication Link

https://doi.org/10.1039/D4MD00608A

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا