تجاوز إلى المحتوى الرئيسي

An Enhanced Automatic Arabic Essay Scoring System Based on Machine Learning Algorithms

Author name : ABDELAZIZ IBRAHIM ABDELKHALEK SHEHAB
Publication Date : 2023-10-31
Journal Name : Computers, Materials & Continua

Abstract

Despite the extensive effort to improve intelligent educational tools for smart learning environments, automatic Arabic essay scoring remains a big research challenge. The nature of the writing style of the Arabic language makes the problem even more complicated. This study designs, implements, and evaluates an automatic Arabic essay scoring system. The proposed system starts with pre-processing the student answer and model answer dataset using data cleaning and natural language processing tasks. Then, it comprises two main components: the grading engine and the adaptive fusion engine. The grading engine employs string-based and corpus-based similarity algorithms separately. After that, the adaptive fusion engine aims to prepare students’ scores to be delivered to different feature selection algorithms, such as Recursive Feature Elimination and Boruta. Then, some machine learning algorithms such as Decision Tree, Random Forest, Adaboost, Lasso, Bagging, and K-Nearest Neighbor are employed to improve the suggested system’s efficiency. The experimental results in the grading engine showed that Extracting DIStributionally similar words using the CO-occurrences similarity measure achieved the best correlation values. Furthermore, in the adaptive fusion engine, the Random Forest algorithm outperforms all other machine learning algorithms using the (80%–20%) splitting method on the original dataset. It achieves 91.30%, 94.20%, 0.023, 0.106, and 0.153 in terms of Pearson’s Correlation Coefficient, Willmot’s Index of Agreement, Mean Square Error, Mean Absolute Error, and Root Mean Square Error metrics, respectively.

Keywords

Arabic; corpus-based similarity; correlation; machine learning; string-based similarity; text similarity

Publication Link

https://www.techscience.com/cmc/v77n1/54456

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا