تجاوز إلى المحتوى الرئيسي

Balanced Team Formation Using Hybrid Graph Convolution Networks and MILP

Author name : TURKI GORMOLLAH SAEED ALGHAMDI
Publication Date : 2025-02-11
Journal Name : Applied Sciences

Abstract

In this paper, we propose a novel model that is based on a hybrid paradigm composed of a graph convolution network and an Integer Programming solver. The model utilizes the potential of graph neural networks, which have the ability to capture complex relationships and preferences among nodes. While the graph neural network forms node embeddings that are fed as input into the next layer of the model, the introduced MILP solver works to solve the team formation problem. Finally, our experimental work shows that the outcome of the model is balanced teams.

Keywords

team formation problem; graph neural network; graph convolution network; mixed-integer linear programming; node embeddings

Publication Link

https://doi.org/10.3390/app15042049

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا