تجاوز إلى المحتوى الرئيسي

Leakage current reduction in n-GaN/p-Si (100) heterojunction solar cells

Author name : Kamal Eldin Mohamed Abdalla Abdelrahman
Publication Date : 2021-01-14
Journal Name : Applied Physics Letters

Abstract

We report on the growth of n-GaN/p-Si heterojunction solar cells via thermal chemical vapor deposition on Si (100) substrates at different growth temperatures (900, 950, and 1000 °C). The influence of growth temperature on the morphological, structural, optical, and electrical properties of GaN films has been elucidated. Increasing the growth temperature was found to reduce the internal stress and improve the material's crystallinity as confirmed via x-ray diffraction and Raman spectroscopy analyses. The photoluminescence spectra exhibit strong near band edge peaks in the range between 375 and 366 nm, with the peak intensity increasing with increasing the growth temperature. The current–voltage (J–V) characteristics of the assembled heterojunction solar cells showed the reverse leakage current to decrease with increasing the growth temperature. Consequently, the solar cell fabricated using the films grown at 1000 °C exhibits higher conversion efficiency (8.17%) than those grown at 950 °C (5.15%) and 900 °C (2.48%), respectively. This work shows that the structural, optical, and photovoltaic properties of the grown n-GaN/p-Si heterojunction solar cell structures are strongly influenced by the growth temperature.

Keywords

GaN, NWs, heterojunction solar cell

Publication Link

https://doi.org/10.1063/5.0037866

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا