تجاوز إلى المحتوى الرئيسي

Deep learning models for multilabel ECG abnormalities classification: A comparative study using TPE optimization

Author name : Murtada Khalafallah Elbashir
Publication Date : 2023-06-22
Journal Name : Journal of Intelligent Systems

Abstract

The problem addressed in this study is the limitations of previous works that considered electrocardiogram (ECG) classification as a multiclass problem, despite many abnormalities being diagnosed simultaneously in real life, making it a multilabel classification problem. The aim of the study is to test the effectiveness of deep learning (DL)-based methods (Inception, MobileNet, LeNet, AlexNet, VGG16, and ResNet50) using three large 12-lead ECG datasets to overcome this limitation. The define-by-run technique is used to build the most efficient DL model using the tree-structured Parzen estimator (TPE) algorithm. Results show that the proposed methods achieve high accuracy and precision in classifying ECG abnormalities for large datasets, with the best results being 97.89% accuracy and 90.83% precision for the Ningbo dataset, classifying 42 classes for the Inception model; 96.53% accuracy and 85.67% precision for the PTB-XL dataset, classifying 24 classes for the Alex net model; and 95.02% accuracy and 70.71% precision for the Georgia dataset, classifying 23 classes for the Alex net model. The best results achieved for the optimum model that was proposed by the define-by-run technique were 97.33% accuracy and 97.71% precision for the Ningbo dataset, classifying 42 classes; 96.60% accuracy and 83.66% precision for the PTB-XL dataset, classifying 24 classes; and 94.32% accuracy and 66.97% precision for the Georgia dataset, classifying 23 classes. The proposed DL-based methods using the TPE algorithm provide accurate results for multilabel classification of ECG abnormalities, improving the diagnostic accuracy of heart conditions.

Keywords

heart disease; ECG; 12-lead ECG signal; deep learning models; PTB-XL; tree-structured Parzen estimator algorithm

Publication Link

https://doi.org/10.1515/jisys-2023-0002

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا