تجاوز إلى المحتوى الرئيسي

Graph-based methods for significant concept selection

Author name : Karim Gasmi
Publication Date : 2015-09-01
Journal Name : Procedia Computer Science

Abstract

It is well known in information retrieval area that one important issue is the gap between the query and document vocabularies. Concept-based representation of both the document and the query is one of the most effective approaches that lowers the effect of text mismatch and allows the selection of relevant documents that deal with the shared semantics hidden behind both. However, identifying the best representative concepts from texts is still challenging. In this paper, we propose a graph-based method to select the most significant concepts to be integrated into a conceptual indexing system. More specifically, we build the graph whose nodes represented concepts and weighted edges represent semantic distances. The importance of concepts are computed using centrality algorithms that levrage between structural and contextual importance. We experimentally evaluated our method of concept selection using the standard ImageClef2009 medical data set. Results showed that our approach significantly improves the retrieval effectiveness in comparison to state-of-the-art retrieval models.

Keywords

-

Publication Link

https://doi.org/10.1016/j.procs.2015.08.170

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا