تجاوز إلى المحتوى الرئيسي

Resolvent Kernels Of Dirac, Euler Operators And Harmonic Oscillators

Author name : Anouar Saidi
Publication Date : 2020-02-01
Journal Name : International Journal of Scientific and Technology Research

Abstract

In this article, we give a new method based on the Bargmann transform to compute the resolvent kernel and the eigenvectors of generalized
Dirac, Euler operators and harmonic oscillators.

Keywords

: Bargmann transform, harmonic oscillator, integral transform, intertwinning operator, resolvent kernel, Green‟s function, eigenvectors

Publication Link

https://www.ijstr.org/final-print/feb2020/Resolvent-Kernels-Of-Dirac-Euler-Operators-And-Harmonic-Oscillators.pdf

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا