تجاوز إلى المحتوى الرئيسي

Advancements in brain tumor identification: Integrating synthetic GANs with federated-CNNs in medical imaging analysis

Author name : RASHA MAHMOUD ABDELAZIZ HASSANIEN
Publication Date : 2024-07-03
Journal Name : Alexandria Engineering Journal

Abstract

Brain tumors are a significant health concern worldwide, necessitating accurate and timely diagnosis for effective treatment planning and management. However, conventional methods for brain tumor identification through medical imaging analysis often face challenges related to accuracy, efficiency, and privacy concerns. Current approaches may struggle with limited datasets, privacy regulations hindering data sharing, and the need for specialized expertise in interpreting medical images. Accurately identifying brain tumors is pivotal in diagnosis, treatment planning, and patient prognosis. This research proposes a novel approach for advancing brain tumor identification by integrating Synthetic Generative Adversarial Networks with federated convolutional neural Networks in medical imaging analysis. Federated-CNNs are a type of neural network architecture designed for federated learning scenarios. In federated learning, model training occurs locally on data distributed across multiple devices or institutions without exchanging raw data. Federated CNNs allow collaborative model training across these distributed datasets by aggregating local model updates rather than exchanging raw data. This approach ensures that sensitive data remain localized within each participating institution, thus addressing privacy concerns in medical imaging analysis. Our methodology harnesses the power of GANs to generate synthetic brain MRI images, addressing data scarcity issues commonly encountered in medical imaging datasets. These synthetic images are then utilized in conjunction with Federated-CNNs, enabling cooperative model training between many healthcare institutions while maintaining the anonymity and privacy of data. Moreover, integrating Federated CNNs ensures that sensitive medical imaging data remain localized within participating institutions, addressing data privacy concerns and fostering collaboration among medical professionals. The research advances medical imaging analysis by introducing a novel methodology that leverages existing technologies to improve brain tumor identification accuracy. Specifically, the feature extraction phase using DenseNet121, implemented in MATLAB, achieves an outstanding accuracy of 99.82 % and outperforms Various existing methods, including Inception-V3, ResNet-18, and GoogleNet, demonstrating the efficacy of our approach in capturing discriminative features from medical imaging data. This high accuracy underscores the potential of our methodology to enhance diagnostic accuracy and clinical decision-making in neurology and oncology. The research offers a promising avenue for further exploration and innovation in medical imaging analysis, with significant implications for improving patient outcomes and advancing healthcare practices.

Keywords

Generative adversarial networksFederated-CNNsBrain tumor diagnosisFeature extractionDensenet12

Publication Link

https://doi.org/10.1016/j.aej.2024.06.080

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا