تجاوز إلى المحتوى الرئيسي
 

 

 

Electrochemical behavior of a spinel zinc ferrite alloy obtained by a simple sol-gel route for Ni-MH battery applications

Author name : abozeid ali othman ibraheem
Publication Date : 2020-10-27
Journal Name : International Journal of Hydrogen Energy (ًWiley)

Abstract

The hydrogen storage properties of zinc ferrite spinel (ZnFe2O4) alloy were studied, in this work. This alloy, formed applying the sol-gel technique, was employed as anode in Ni-MH accumulators. X-ray diffractogram analysis showed the appearance of the compound spinel with cubic structure. In fact, the crystallite size, specified by the TEM technique, was equal to 30 nm. The hydrogen storage properties of zinc ferrite spinel alloy were examined applying various electromechanical methods (chronopotentiometry, cyclic voltammetry, and chronoamperometry) at the C/10 rate and at room temperature. The maximum discharge capacity value was almost equal to 145 mAh/g. After 100 cycles, a good cycling stability was attained and correlation between the (DH/a2) ratio and the discharge capacity as noticed. The electrolyte/ZnFe2O4 anode interface prior to and following activation was studied utilizing electrochemical impedance spectroscopy.

Keywords

Ni-MH accumulators

Publication Link

https://doi.org/10.1002/er.6140

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence
DR KALADHAR REDDY AILENI
Modeling the Social Factors Affecting Students Satisfaction with Online Learning: A Structural Equation Modeling Approach
ABDULHAMEED RAKAN ALENEZI
Higher Knee Muscles Co-Contractions are Observed in Individuals Exhibiting Loading Asymmetry Early after ACL Reconstruction. The Combined Sections Meeting
ABDULMAJEED BARAKAT MUBARAK ALFAYYADH
تواصل معنا