تجاوز إلى المحتوى الرئيسي

Automated segmentation of brain MR images by combining Contourlet Transform and K-means Clustering techniques

Author name : ABDULHAMEED RAKAN ALENEZI
Publication Date : 2014-01-14
Journal Name : Journal of Theoretical and Applied Information Technology

Abstract

Segmentation is usually conceived as a compulsory phase for the analysis and classification to the field of medical imaging. The aim of the paper is to find a means for the segmentation of brain from MR images by technique of combining Contourlet Transform and K-Means Clustering in an automatic way. De-noising is always an exigent problem in magnetic resonance imaging and significant for clinical diagnosis and computerized analysis such as tissue classification and segmentation. In this paper Contourlet transform has been used for noise removal and enhancement for the image superiority. The proposed technique is exclusively based upon the information enclosed within the image. There is no need for human interventions and extra information about the system. This technique has been tested on different types of MR images, and conclusion had been concluded.

Keywords

segmentation , Contourlet Transform , K-means Clustering techniques

Publication Link

https://www.semanticscholar.org/paper/Automated-segmentation-of-brain-MR-images-by-and-Arshad-Wang/a0cf375a5355bf2ef47f5726ef6b0449526ef521

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Frequency and voltage dependent of electrical and dielectric properties of 14 nm Fully Depleted Silicon-On-Insulator (FD-SOI)
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Strengths Mindset as a Mediator in the Relationship Between Paradoxical Leadership and Nurses' Positive Attitudes Towards Artificial Intelligence: A Cross-Sectional Study
MOHAMED ELSAYED MOHAMED ZAKY
تواصل معنا