تجاوز إلى المحتوى الرئيسي

Analyzing the Patient Behavior for Improving the Medical Treatment Using Smart Healthcare and IoT-Based Deep Belief Network

Author name : RASH MOHAMED MOHAMED KAMAL ABDELBAKY
Publication Date : 2022-10-03
Journal Name : Journal of Healthcare Engineering

Abstract

Patient behavioral analysis is a critical component in treating patients with a variety of issues, with head trauma, neurological disease, and mental illness. The analysis of the patient's behavior aids in establishing the disease’s core cause. Patient behavioral analysis has a number of contests that are much more problematic in traditional healthcare. With the advancement of smart healthcare, patient behavior may be simply analyzed. A new generation of information technologies, particularly the Internet of Things (IoT), is being utilized to transform the traditional healthcare system in a variety of ways. The Internet of Things (IoT) in healthcare is a crucial role in offering improved medical facilities to people as well as assisting doctors and hospitals. The proposed system comprises of a variety of medical equipment, such as mobile-based apps and sensors, which is useful in collecting and monitoring the medical information and health data of patient and interact to the doctor via network connected devices. This research may provide key information on the impact of smart healthcare and the Internet of Things in patient beavior and treatment. Patient data are exchanged via the Internet, where it is viewed and analyzed using machine learning algorithms. The deep belief neural network evaluates the patient’s particulars from health data in order to determine the patient’s exact health state. The developed system proved the average error rate of about 0.04 and ensured accuracy about 99% in analyzing the patient behavior.

Keywords

head trauma, neurological disease, mental illness

Publication Link

https://doi.org/10.1155/2022/6389069

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا