تجاوز إلى المحتوى الرئيسي
 

 

 

Shear strength and particle breakage of construction and demolition waste as a function of moisture state and compaction level: Insights for sustainable highway engineering

Author name : FAYEZ KHALAF RAHIL ALANAZI
Publication Date : 2024-04-02
Journal Name : PLOS One

Abstract

In this study, the variation of shear strength behavior and particle breakage (after shearing), as a function of moisture state and compaction level, is investigated for recycled concrete aggregate blended with recycled clay masonry. Recycled masonry was blended with concrete aggregate in percentages ranging from 0% to 30% by total weight. Tests include; basic engineering characteristics (particle size, modified compaction, hydraulic conductivity, and California Bearing Ratio, CBR) as well as unconsolidated undrained static triaxial testing. In triaxial tests, moisture levels ranged from 60% to 100% of optimum moisture content, but compaction levels ranged from 90% to 98% of maximum dry density. The hydraulic conductivity for blends is approximately 2x10-6 cm/s, which indicates a relatively low hydraulic conductivity. Results show a proportional linear relationship between the shear strength of blends and the level of compaction. Despite this, both apparent cohesion and shear strength exhibited reverse linear trends. As expected, more compaction effort resulted in more particle breakage. Strict control should be performed over the compaction process to achieve the required compaction level which resulting in pavement materials being stiffer.

Keywords

Shear Strength, Construction and Demolition Waste, Compaction Level Moisture State, Sustainable Highway Engineering

Publication Link

https://doi.org/10.1371/journal.pone.0298765

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
تواصل معنا