تجاوز إلى المحتوى الرئيسي
 

 

 

Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment

Author name : AMJAD FAISAL A Almatrood
Publication Date : 2023-06-10
Journal Name : Sensors

Abstract

In this study, we propose a quantum structure of an associative memory cell for effective data learning based on artificial intelligence. For effective learning of related data, content-based retrieval and storage rather than memory address is essential. A content-addressable memory (CAM), which is an efficient memory cell structure for this purpose, in a quantum computing environment, is designed based on quantum-dot cellular automata (QCA). A CAM cell is composed of a memory unit that stores information, a match unit that performs a search, and a structure, using an XOR gate or an XNOR gate in the match unit, that shows good performance. In this study, we designed an XNOR gate with a multilayer structure based on electron interactions and proposed a QCA-based CAM cell using it. The area and time efficiency are verified through a simulation using QCADesigner, and the quantum cost of the proposed XOR gate and CAM cell were reduced by at least 70% and 15%, respectively, when compared to the latest research. In addition, we physically proved the potential energy owing to the interaction between the electrons inside the QCA cell. We also proposed an additional CAM circuit targeting the reduction in energy dissipation that overcomes the best available designs. The simulation and calculation of power dissipation are performed by QCADesigner-E and it is confirmed that more than 27% is reduced.

Keywords

quantum computing; nanotechnology; artificial intelligent learning; quantum-dot cellular automata; content addressable memory; low-power QCA circuits

Publication Link

https://www.mdpi.com/1424-8220/23/1/19

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
تواصل معنا