تجاوز إلى المحتوى الرئيسي
 

 

 

Machine Learning Approach for Autonomous Detection and Classification of COVID-19 Virus

Author name : AHMED IBRAHIM TALOBA MOHAMED
Publication Date : 2022-06-01
Journal Name : Computers and Electrical Engineering

Abstract

As people all over the world are vulnerable to be affected by the COVID-19 virus, the automatic detection of such a virus is an important concern. The paper aims to detect and classify corona virus using machine learning. To spot and identify corona virus in CT-Lung screening and Computer-Aided diagnosis (CAD) system is projected to distinguish and classifies the COVID-19. By utilizing the clinical specimens obtained from the corona-infected patients with the help of some machine learning techniques like Decision Tree, Support Vector Machine, K-means clustering, and Radial Basis Function. While some specialists believe that the RT-PCR test is the best option for diagnosing Covid-19 patients, others believe that CT scans of the lungs can be more accurate in diagnosing corona virus infection, as well as being less expensive than the PCR test. The clinical specimens include serum specimens, respiratory secretions, and whole blood specimens. Overall, 15 factors are measured from these specimens as the result of the previous clinical examinations. The proposed CAD system consists of four phases starting with the CT lungs screening collection, followed by a pre-processing stage to enhance the appearance of the ground glass opacities (GGOs) nodules as they originally lock hazy with fainting contrast. A modified K-means algorithm will be used to detect and segment these regions. Finally, the use of detected, infected areas that obtained in the detection phase with a scale of 50×50 and perform segmentation of the solid false positives that seem to be GGOs as inputs and targets for the machine learning classifiers, here a support vector machine (SVM) and Radial basis function (RBF) has been utilized. Moreover, a GUI application is developed which avoids the confusion of the doctors for getting the exact results by giving the 15 input factors obtained from the clinical specimens.

Keywords

Covid-19 analysisRadial basis functionCAD systemClinical specimens,SVM

Publication Link

https://doi.org/10.1016/j.compeleceng.2022.108055

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
تواصل معنا