تجاوز إلى المحتوى الرئيسي
 

 

 

Electrochemical behavior of a spinel zinc ferrite alloy obtained by a simple sol-gel route for Ni-MH battery applications

Author name : abozeid ali othman ibraheem
Publication Date : 2020-10-27
Journal Name : International Journal of Hydrogen Energy (ًWiley)

Abstract

The hydrogen storage properties of zinc ferrite spinel (ZnFe2O4) alloy were studied, in this work. This alloy, formed applying the sol-gel technique, was employed as anode in Ni-MH accumulators. X-ray diffractogram analysis showed the appearance of the compound spinel with cubic structure. In fact, the crystallite size, specified by the TEM technique, was equal to 30 nm. The hydrogen storage properties of zinc ferrite spinel alloy were examined applying various electromechanical methods (chronopotentiometry, cyclic voltammetry, and chronoamperometry) at the C/10 rate and at room temperature. The maximum discharge capacity value was almost equal to 145 mAh/g. After 100 cycles, a good cycling stability was attained and correlation between the (DH/a2) ratio and the discharge capacity as noticed. The electrolyte/ZnFe2O4 anode interface prior to and following activation was studied utilizing electrochemical impedance spectroscopy.

Keywords

Ni-MH accumulators

Publication Link

https://doi.org/10.1002/er.6140

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
تواصل معنا