Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
Abstract
Ultrafiltration is vital for wastewater treatment and industrial processes like food production and pharmaceuticals. This comprehensive study investigates the intricate development and performance evaluation of advanced
composite membranes composed of sulfonated polyethersulfone (SPES), polyaniline (PANI), and sulfonated
polyaniline (SPANI). Spectroscopic analyses (FTIR and XRD) confirm successful PANI and SPANI integration with
the SPES matrix. Thermogravimetric assessment shows improved thermal stability in SPES-SPANI 3 % membranes with a higher decomposition temperature than pristine membranes. Morphological analysis via FESEM
reveals structural changes in nanocomposite membranes, highlighting PANI and SPANI’s impact on microscale
morphology. Mechanical testing indicates significant elongation increase and enhanced flexibility in SPES-SPANI
3 % membranes. Physicochemical characterizations demonstrate heightened porosity, water uptake, and surface
hydrophilicity with PANI and SPANI incorporation. Permeability tests show a substantial increase in pure water
flux, reaching 220 Lm-2h− 1 for SPES-SPANI 3 % membranes. Antifouling effectiveness is evident through lower
flux values for foulants (HA, BSA, SA, and NOM) compared to pure water. The hybrid membranes exhibited
remarkable resistance to fouling, removing more than 98.69 %, 99.23 %, and 99.49 % of BSA, HA, and SA,
respectively, without compromising their rejection rates. Long-term durability assessments confirm stable performance, with SPES-SPANI 3 % membranes recovering 98 % of the initial flux after three cycles. This investigation highlights the robust of SPES-SPANI 3 % membranes for water filtration, emphasizing improved thermal
stability, morphological enhancements, flexibility, and superior antifouling and rejection capabilities. These
findings offer crucial insights for developing advanced membranes in efficient and durable water purification
technologies.