Bifunctional ratiometric sensor based on highly fluorescent nitrogen and sulfur biomass-derived carbon nanodots fabricated from manufactured dairy product as a precursor
Abstract
Novel biomass-derived carbon dots co-doped with nitrogen and sulfur were fabricated through facile and simple synthetic method from manufactured milk powder and methionine as precursors. The as-fabricated platform was used for ratiometric fluorescence sensing of Cu (II) and bisphosphonate drug risedronate sodium. The sensing platform is based on oxidation of o-phenylenediamine by Cu (II) to form 2, 3-diaminophenazine (oxidized product) with an emission peak at 557 nm. The resultant product quenched the fluorescence emission of as-fabricated carbon dots at 470 nm through Förster resonance energy transfer (FRET) and inner-filter effect (IFE). Upon addition of risedronate sodium, the formation of 2, 3-diaminophenazine was decreased as a result of Cu (II) chelation with risedronate sodium, recovering the fluorescence emission of carbon dots. The ratio of fluorescence at 470 nm and 557 nm was measured as a function of Cu (II) and risedronate sodium concentrations. The proposed sensing platform sensitively detected Cu (II) and risedronate sodium in the range of 0.01–55 μM and 5.02–883 µM with LODs (S/N = 3) of 0.003 μM and 1.48 µM, respectively. The sensing platform exhibited a good selectivity towards Cu (II) and risedronate sodium. The sensing system was used to determine Cu (II) and risedronate sodium in different sample matrices with recoveries % in the range of 99–103 % and 97.4–103.8 %, and RSDs % in the range of 1.5–3.0 % and 1.8–3.6 %, respectively.