تجاوز إلى المحتوى الرئيسي

Differential Game for Distributed Power Control in Device-to-Device Communications Underlaying Cellular Networks

Author name : AMR MOHAMED ADEL AHMED AHMED RADWAN
Publication Date : 2019-08-23
Journal Name : Wireless Personal Communications

Abstract

In the formulating of power control for wireless networks, the radio channel is commonly formulated using static models of optimization or game theory. In these models, the optimization programming or static game is played from time point to time point. Therefore, this approach neglects the dynamics of the time-varying channels and assumes the statistical independence between the successive time points. In this paper, we utilize differential equations to model the wireless links, then formulate a differential game for the power control problem in device-to-device (D2D) communications underlaying cellular networks. The game players are the D2D pairs, which manage their transmit power by solving the continuous-time optimal control problems. The time-dependant cost function allows us to optimize the long-term expected cost, instead of point-wise instantaneous cost. We formulate the problem in an affine quadratic form that admits analytical solutions. The unique feedback Nash equilibrium of the game is shown to exist. From a stochastic optimal control algorithm, we design a distributed power control mechanism that converges to the game’s equilibrium. The simulation results show that the proposed approach achieves significant performance improvement compared to the point-wise based approaches.

Keywords

Device-to-device ,Power control, Differential game, Optimal control

Publication Link

https://doi.org/10.1007/s11277-019-06682-7

Block_researches_list_suggestions

Suggestions to read

Rational design of new thienopyridine heterocycles tethering thiophene moiety as antimicrobial agents: Synthesis and computational biology study
MOUSA OSMAN AHMAD GERMOUSH
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
تواصل معنا