Skip to main content

An In Silico Deep Learning Approach to Multi-Epitope Vaccine Design: A Hepatitis E Virus Case Study

Author name : BADR ALI BAKHEET ALZAHRANI
Publication Date : 2023-03-22
Journal Name : Vaccines

Abstract

Hepatitis E Virus (HEV) is a major cause of acute and chronic hepatitis. The severity of HEV infection increases manyfold in pregnant women and immunocompromised patients. Despite the extensive research on HEV in the last few decades, there is no widely available vaccine yet. In the current study, immunoinformatic analyses were applied to predict a multi-epitope vaccine candidate against HEV. From the ORF2 region, 41 conserved and immunogenic epitopes were prioritized. These epitopes were further analyzed for their probable antigenic and non-allergenic combinations with several linkers. The stability of the vaccine construct was confirmed by molecular dynamic simulations. The vaccine construct is potentially antigenic and docking analysis revealed stable interactions with TLR3. These results suggest that the proposed vaccine can efficiently stimulate both cellular and humoral immune responses. However, further studies are needed to determine the immunogenicity of the vaccine construct.

Keywords

HEV; immunoinformatic; multi-epitope; proposed; vaccine

Publication Link

https://www.mdpi.com/2076-393X/11/3/710

Block_researches_list_suggestions

Suggestions to read

Rational design of new thienopyridine heterocycles tethering thiophene moiety as antimicrobial agents: Synthesis and computational biology study
MOUSA OSMAN AHMAD GERMOUSH
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
Contact