Skip to main content

Green Synthesis of Trimetallic Nanocomposite (Ru/Ag/Pd)-Np and Its In Vitro Antimicrobial and Anticancer Activities

Author name : OMNIA MAGDY MOHAMMED HENDAWUY
Publication Date : 2022-09-15
Journal Name : Journal of Chemistry

Abstract

In this study, we used the aqueous extract of garlic tunicate leaf to reduce a mixture of equal amounts of ruthenium chloride, silver nitrate, and palladium acetate for the biosynthesis of ruthenium/silver/palladium trimetallic nanocomposite (Ru/Ag/Pd)-Np. Some physicochemical tools were used for nanocomposite characterization, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), UV-Vis spectroscopy (UV-Vis), scanning electron microscope (SEM), and transmittance electron microscope (TEM). XRD revealed that the crystal size of the nanocomposite is 15.67 nm. The TEM images showed that the particle size ranged 50–90 nm. The antimicrobial efficacy of the nanocomposite was examined against Aspergillus flavus, Aspergillus niger, Candida albicans, Candida glabrata, Escherichia coli, and Bacillus cereus. The results showed a potent antimicrobial activity toward all tested microorganisms. (Ru/Ag/Pd)-Np showed antiproliferative activity against Caco-2, HepG2, and K562 cell lines. The antiproliferative potential of (Ru/Ag/Pd)-Np was significantly improved following UV irradiation.

Keywords

In this study, we used the aqueous extract of garlic tunicate leaf to reduce a mixture of equal amounts of ruthenium chloride, silver nitrate, and palladium acetate for the biosynthesis of ruthenium/silver/palladium trimetallic nanocomposite (Ru/Ag/Pd)-Np. Some physicochemical tools were used for nanocomposite characterization, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), UV-Vis spectroscopy (UV-Vis), scanning electron microscope (SEM), and transmittance electron microscope (TEM). XRD revealed that the crystal size of the nanocomposite is 15.67 nm. The TEM images showed that the particle size ranged 50–90 nm. The antimicrobial efficacy of the nanocomposite was examined against Aspergillus flavus, Aspergillus niger, Candida albicans, Candida glabrata, Escherichia coli, and Bacillus cereus. The results showed a potent antimicrobial activity toward all tested microorganisms. (Ru/Ag/Pd)-Np showed antiproliferative activity against Caco-2, HepG2, and K562 cell lines. The antiproliferative potential of (Ru/Ag/Pd)-Np was significantly improved following UV irradiation.

Publication Link

https://doi.org/10.1155/2022/4593086

Block_researches_list_suggestions

Suggestions to read

Rational design of new thienopyridine heterocycles tethering thiophene moiety as antimicrobial agents: Synthesis and computational biology study
MOUSA OSMAN AHMAD GERMOUSH
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
Contact