Skip to main content

AI-based prediction of traffic crash severity for improving road safety and transportation efficiency

Author name : HISHAM KHALAF ZAYED ALLAHEM
Publication Date : 2025-07-28
Journal Name : Scientific Reports

Abstract

Ensuring safe transportation requires a comprehensive understanding of driving behaviors and road safety to mitigate traffic crashes, reduce risks and enhance mobility. This study introduces an AI-driven machine learning (ML) framework for traffic crash severity prediction, utilizing a large-scale dataset of over 2.26 million records. By integrating human, crash-specific, and vehicle-related factors, the model improves predictive accuracy and reliability. The methodology incorporates feature engineering, clustering techniques such as K-Means and HDBSCAN, with oversampling methods such as RandomOverSampler, SMOTE, Borderline-SMOTE, and ADASYN to address class imbalance, along with Correlation-Based Feature Selection (CFS) and Recursive Feature Elimination (RFE) for optimal feature selection. Among the evaluated classifiers, the Extra Trees (ET Classifier) ensemble model demonstrated superior performance, achieving 96.19% accuracy and an F1-score (macro) of 95.28%, ensuring a well-balanced prediction system. The proposed framework provides a scalable, AI-powered solution for traffic safety, offering actionable insights for intelligent transportation systems (ITS) and accident prevention strategies. By leveraging advanced ML and feature selection techniques, this approach enhances traffic risk assessment and enables data-driven decision-making.

Keywords

Traffic crash prediction, ML models, Feature engineering, Class imbalance, Oversampling, Feature selection

Publication Link

https://doi.org/10.1038/s41598-025-10970-7

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
CID-RPL: Clone ID Attack detection using Deep Neural Network for RPL-based IoT Networks
THANAA SALEM AHMED ALNUSAIRI
Contact