تجاوز إلى المحتوى الرئيسي

Micropolar viscoelastic nanostructures subjected to laser-induced heat flux using the modified higher-order thermoelasticity model incorporating phase delay effects

Author name : Mohamed Elsayed Ahmad Hassan Nasr
Publication Date : 2024-04-18
Journal Name : Acta Mechanica

Abstract

The gap between classical continuity and nanomechanics can be bridged using the concept of nonlocal elasticity. The Voigt viscoelastic model and the generalized dual-phase thermoelastic micropolar framework (DPL) are considered. Also, higher-order time derivatives with a two-phase delay are included in the heat transfer equation to generalize the proposed model. The mechanical and viscoelastic properties of suspensions, colloidal liquids, concretes, etc., can be described by applying the suggested model. As an example of using the proposed model, the effect of the pulsed heat transfer rate on the thermoelastic micropolar half-space was investigated. The analytical formulas for deformation, nonlocal thermal stress, and temperature change were derived after solving the governing equations using the Laplace transform technique. The graphical representation of numerical simulation results has been utilized to illustrate the effects of micropolarity, higher-order phenomena, phase delay, nonlocal index, and viscosity variables on a given distance. In this specific instance, the conclusions drawn from this analysis also incorporated the results of previously conducted research.

Keywords

.

Publication Link

https://doi.org/10.1007/s00707-024-03910-5

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا