تجاوز إلى المحتوى الرئيسي

Smart node relocation (SNR) and connectivity restoration mechanism for wireless sensor networks

Author name : Shahzad Ali Zulfiqar Ali
Publication Date : 2025-02-05
Journal Name : EURASIP Journal on Wireless Communications and Networking

Abstract

Node failures are inevitable in wireless sensor networks (WSNs) because sensor nodes in WSNs are miniature and equipped with small and often irreplaceable batteries. Due to battery drainage, sensor nodes can fail at any instance. Moreover, WSNs operate in hostile environments and environmental factors may also contribute to nodes failure. Failure of nodes leads to disruption of inter-node connectivity and might also lead to network partitioning. Failure to communicate with each other and with the base station can compromise the basic operation of the sensor network. For restoration of connectivity, a robust recovery mechanism is required. The existing connectivity restoration mechanisms suffer from shortcomings because they do not focus on energy-efficient operation and coverage-aware mechanisms while performing connectivity restoration. As a result, most of these mechanisms lead to the excessive mobility of nodes, which itself causes the utilization of excessive battery. In this work, we propose a novel technique called smart node relocation (SNR). SNR is capable of detecting and restoring the connectivity caused by either single or multiple node failures. For achieving energy efficiency, SNR relies on transmitting a lesser number of control packets. For achieving the goal of being coverage-aware, it tries to relocate only essential nodes while trying to restore connectivity. By performing extensive simulations, we prove that SNR outperforms the existing approaches concerning multiple performance metrics including but not limited to the total number of packets transmitted, total distance moved for connectivity restoration, the percentage reduction in field coverage.

Keywords

Routing, simulations, connectivity restoration

Publication Link

https://doi.org/10.1186/s13638-021-02053-8

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا