تجاوز إلى المحتوى الرئيسي

Gas sensor based on graphene sheet derivatives decorated by Ni and As atoms

Author name : TURKI BASHAR ABDRABUH ALOTAIBI
Publication Date : 2023-05-20
Journal Name : Modern Physics Letters B

Abstract

Studying toxic gases is more important because it is related to the health of humans. Therefore, it is appropriate to make some theoretical calculations to cover this topic. This study selectivity tunes the graphene derivatives’ ability to sense the most common gases in the atmosphere such as carbon monoxide, carbon dioxide, and oxygen. This involves a pristine and doped Gr-sheets complex with three gases. Density Functional Theory (DFT) was employed to investigate the electronic structures of 12 graphene-based sheets. The bandgap simulations demonstrate the effect of doping and complexing graphene sheets with different segments, that result in a sensing signature. The bandgap calculations also prove that the studied graphene derivatives selectively bind to different gases and this characteristic is in good agreement with the total energy calculations. Our results show that the electrical properties

Keywords

2D materialsgraphene-doped Ni–Asgas sensorDFT

Publication Link

https://doi.org/10.1142/S0217984923500367

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا