تجاوز إلى المحتوى الرئيسي
 

 

 

Processing of new efficient Cr1-xNaxO3 catalysts for sodium borohydride methanolysis

Author name : KHULAIF NAIF NAWAF ALSHAMMARI
Publication Date : 2023-12-26
Journal Name : International Journal of Hydrogen Energy

Abstract

This study reports the development of a novel Cr1-xNaxO3 catalyst using a simple cost-effective method for hydrogen production from NaBH4 methanolysis. The properties of the nanocomposites were investigated by employing XRD, FTIR, SEM and XPS characterization techniques. The XRD diffraction peaks confirmed the rhombohedral crystal structure of Cr1.xNaxO3 nanoparticles. The average crystal size of these nanoparticles was found to be ranging from 25.0 to 20 nm. FTIR analysis showed the characteristic absorption bands of Cr1.xNaxO3 nanoparticles. The SEM images of Cr2O3 and Cr1.7Na0.3O3 demonstrated that the nanoparticles are irregular in shape, while Cr1.4Na0.6O3 has a porous surface texture. XPS spectra of Cr2O3, Cr1.7Na0.3O3 and Cr1.4Na0.6O3 confirmed the presence of chromium, oxygen, and sodium in the samples. The optical band gaps of Cr2O3 Cr1.7Na0.3O3 and Cr1.4Na0.6O3 nanoparticles were approximately 3.28 eV, 1.61 and 0.81 eV, respectively. Cr1.4Na0.6O3 exhibited the most significant level of activity in terms of hydrogen production of 19144 mL/g.min.

Keywords

hydrogen evolution, nanocatalyst, Cr2O3 nanoparticles, NaBH4

Publication Link

https://doi.org/10.1016/j.ijhydene.2023.12.078

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
تواصل معنا