Synthesis of chitosan/Fe2O3/CuO-nanocomposite and their role as inhibitor for some biological disorders in vitro with molecular docking interactions studies
Abstract
The hybrid material between the functional elements particularly with the polymer compounds as a nanocomposites are attractive in numerous fields. In the current work, chitosan/Fe2O3/CuO-nanocomposite has been successfully synthesized in situ via a coprecipitation method and characterized by several apparatuses. The X-ray diffraction cleared that chitosan/Fe2O3/CuO-nanocomposite was crystalline. Transmission Electron Microscopy (TEM) showed that the size of chitosan/Fe2O3/CuO-nanocomposite was of 17–85 nm. Candida albicans, Candida tropicalis, and Geotrichum candidum were inhibited employing the chitosan/Fe2O3/CuO-nanocomposite with inhibition areas of 25 ± 0.1 and 30 ± 0.1, and 23 ± 0.2 mm, respectively. Minimum inhibitory concentration (MIC) of chitosan/Fe2O3/CuO-nanocomposite was 15.62, 31.25, and 62.5 μg/mL for C. tropicalis, C. albicans, and G. candidum, respectively. Biofilm formation of C. albicans, C. tropicalis and G. candidum was inhibited at level of 95.31, 96.65, and 93.63 %, respectively at 75 % MIC of chitosan/Fe2O3/CuO-nanocomposite. The exposed C. tropicalis to chitosan/Fe2O3/CuO-nanocomposite showed severe damag of cytoplasm membrane with cell wall rupture. Chitosan/Fe2O3/CuO-nanocomposite reflected anticancer potential against human skin cancer (A-431) cells with IC50 of 77.79 ± 1.37 μg/mL. Moreover, wound heals was induced by chitosan/Fe2O3/CuO-nanocomposite with closure level 92.76 %. Molecular docking studies suggested strong binding of C. tropicalis (PDB ID: 8BH8) and A-431 (PDB ID: 5JJX) proteins with CuO nanoparticles and FeO nanoparticles.